SAT digitale – novità College Board

In questi giorni College Board ha annunciato novità importanti: a partire da marzo 2023, per gli studenti internazionali il SAT diventerà “digitale”.

Questo vuol dire che a partire dalla sessione primaverile, l’esame verrà erogato esclusivamente al computer.

Per svolgere l’esame, sarà comunque obbligatorio recarsi presso un test center. Non sarà possibile, infatti, utilizzare il proprio computer per sostenere il SAT da casa.

I test centers saranno dotati di computer o tablet che gli esaminandi dovranno utilizzare per completare le prove SAT.
Scrambled Eggs Scuola di Inglese le ha riassunte tutte per voi. Vi saranno certamente utili durante i nostri corsi!

Durata

Una prima novità riguarda qualche piccolo cambiamento alle prove stesse.

In primo luogo, il SAT digitale sarà più breve: la durata sarà di circa due ore invece che di tre ore e mezza.
Questo è in parte dovuto alle modifiche previste per la sezione reading, che presenterà dei testi più brevi.

La durata di ogni singola sezione, comunque, non è ancora stata definita.

Matematica

Per quanto riguarda la sezione di matematica, la grande novità è che verrà erogata in una sezione unica. Non ci sarà più alcuna distinzione tra matematica con o senza calcolatrice. Sarà quindi possibile utilizzare la calcolatrice per rispondere a tutte le domande.

Inoltre, lo studente non dovrà più preoccuparsi di portarsi la calcolatrice da casa. Il sistema utilizzato per l’erogazione del SAT digitale sarà provvisto di calcolatrice incorporata.

Risultati

Un’altra novità importante riguarda i risultati, che saranno disponibili già dopo pochi giorni. Questo permetterà di evitare le lunghe attese e di affrontare l’esame anche a ridosso dell’iscrizione all’università. Questa novità potrebbe tornare utile soprattutto a chi è interessato ad iscriversi all’università Bocconi!

Non ci sarà nessun cambiamento invece per quanto riguarda il punteggio.
Il massimo ottenibile è di 1600 punti suddivisi in 800 per la sezione di reading & writing e 800 per la sezione di matematica.

 

In ultimo, per il SAT digitale College Board metterà a disposizione un’applicazione dedicata in cui sarà possibile trovare esercizi e simulazioni per prepararsi al meglio all’esame.

Tutti gli altri aspetti del SAT rimarranno invariati. Le informazioni complete sull’esame si trovano: qui.

Scrambled Eggs è una scuola di inglese a Milano in cui gli studenti possono prepararsi e migliorare il loro punteggio SAT.
In passato abbiamo aiutato parecchi studenti di tutta Italia ed Europa ad ottenere il punteggio sufficiente ad entrare in Bocconi e nelle più prestigiose università di tutto il mondo.

Puoi studiare per prepararti al SAT ed accedere alle migliori università con noi nella nostra sede di Milano oppure online.
Visita la nostra sezione dedicata ai suggerimenti SAT per prepararti al meglio all’esame e contattaci per conoscere tutto sui nostri corsi.

SAT Math – Percents | Part 2

Hopefully, you have finished the first blog post I wrote about percentages because this directly follows that one. If you haven’t, it describes how to write percentages in the form of multiplication which is very useful when working with a complicated problem. Here we will discuss the more complicated percentage questions and how to go about solving them. The test likely won’t ask you to solve a simple question like “Decrease Y by X percentage” but is more likely to ask something that involves multiple steps. The two most common are “successive percentages” and “reversing percentages.” Keep reading below to find strategies for solving both of them.

Part 1: Successive Percentages

These questions involve multiple percentages to be taken of the same value to find the answer.

 

Ex: A book has a retail price P, it is on sale with a 20% discount. Dave uses a super coupon to get an extra 40% off the sale price. What percent of the retail price does Dave pay?

 

The most common incorrect response I see is P – 20% – 40% = P – 60%, so Dave received a 60% discount. This is wrong because the 40% is a reduction of the sale price, not of the original retail price.Thinking of percentages using the technique in the first blog post will save you here and make it very simple.

 

P reduced by 20% is P(0.8) and reduced by a further 40% is P(0.8)(0.6) = P(0.48)

 

So Dave pays 48% of the original retail price.

 

If you see a problem with a value changed by multiple percentages do not add or subtract the percentages but rewrite them so they can be multiplied!

 

 

Part 2: Reversing Percentages

These problems involve receiving the result of a percentage being taken and you need to solve for the original value.

 

Ex: A population decreased by 30% from 2010 to 2015. The population in 2015 is 150,000, what was the population in 2010?

 

The most common mistake for this question is simply increasing the population in 2015 by 30%. 150,000*(1.3) = 195,000. This may get you close to the right answer, but it will never be the right answer. Percentages are not reversible in this way. An easy example to think about is below:

 

100 decreased by 90% is 10. 10 increased by 90% is NOT 100, it’s 19.

 

Why does it work like this? The simple answer is that 90% of 100 is not equivalent to 90% of 10. The same way 30% of 150,000 is not equal to 30% of the population in 2010.

 

To solve this properly you should write it as an algebra equation. Let’s call the population in 2010 P. That gives us:

 

P * (0.7) = 150,000 solving gives us P = 214,285

 

Rewriting the equations or at least thinking about the algebraically should help a lot when you need to reverse percentages and will save you from making simple mistakes!

Practice: Put the techniques to use and solve these more complicated percentage problems!

SAT Math - Quiz

Put the techniques to use and solve these more complicated percentage problems!

Well done! You’ve taken the time out of your busy schedule to improve your skills – we hope it was enjoyable as well as useful for you! By following this link you can find many more of our resources: https://scrambledeggsinglese.it/english-exercises/. For more ideas, take a look at our Instagram. We hope to see you at our English school in Milan soon.

Good luck on your SAT!

SAT Math – Percents | Part 1

So you want to take the SAT? This is quite the challenge for nonnative English speakers as it’s even a challenge for native speakers! Luckily, half the test is given in the universal language… MATH. Even so, I’ve noticed some of the math is taught differently in US schools and some of the questions seem to be more focused on this style of problem. I am talking about percentages specifically. I have seen many students struggle with percentages and they almost always make the same mistakes. I’m hoping the strategy that I lay out below will simplify the problems and help you solve them more quickly, but with most maths there are many different ways to approach the same problem. Some approaches will be easier for some students and the same approach will be more difficult for others. This is the technique with which I’ve had the most success.

Part 1: Increasing by a percentage

Ex: What is 180 increased by 5%?

The quickest way to solve this is to write this 180 * 1.05 = 189.
Hold up.
Why is there a 1.05?
I took a shortcut! 180 increased by 5% can be written as:

180 + 180 * 0.5 which is rewritten 180 * (1+0.5) which simplified is 180 * 1.05

I am using the distributive property of multiplication to get 180 * (1+0.5). An easy way to think of this without the steps is to use this formula when increasing Y by percentage X.

Y*(1+X)

Side note: My thought process for solving this on the exam would go something like this. “180 increased by 5%. Do I know 5% of 180? No. What is 10% of 180? Move the decimal to the left so 18, and 5% is half of 10% so 5% must be 9. 180 plus 9 is 189.”

Part 2: Decreasing by a percentage

Ex: What is 120 decreased by 10%?

The quickest way for solving this would be 120 * 0.9 = 108.
Wait.
Stop.
Where did 0.9 come from?
I took a shortcut again. 120 decreased by 10% can be written as:

120 – 120 * 0.1 which is rewritten 120 * (1-0.1) which is equal to 120 * 0.9

In short, if you have a value Y and are decreasing by percentage X use this formula:

Y*(1-X)

Side note: If you are doing this math in your head, which is necessary for the “no calculator” portion, this is my thought process. “What is 10 percent of 120? Just move the decimal point to the left so 12. Okay, so 120 minus 12 is 108.”

SAT Math - Percents

Practice: Solve these problems using the technique I described above. Try my thought process as well and see if it helps!

 

We hope that satisfied your hunger for learning! If you’re looking for a little more for dessert, here’s the rest of our menu: https://scrambledeggsinglese.it/english-exercises/. Happy with your service? Give us a like on Instagram or swing by our English school in Milan for an English feast!